MicroRNA-204-5p-Mediated Regulation of SIRT1 Contributes to the Delay of Epithelial Cell Cycle Traversal in Diabetic Corneas.
نویسندگان
چکیده
PURPOSE We investigated how the microRNA (miRNA) modifies the expression of silent mating type information regulation 2 homolog 1 (SIRT1) in diabetic corneas. METHODS The bioinformatic assay was used to predict which miRNAs might regulate the expression of SIRT1. A lipid transfection protocol was used to upregulate or knockdown the miRNA expression in TKE2 cells. Adenovirus-expressing short interfering RNA was used to knockdown the expression of SIRT1 in TKE2 cells and Ins2(Akita/+) mice were used to evaluate how miRNA promotes diabetic corneal epithelial wound healing. Cell cycle status was determined by flow cytometry assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to analyze the cell viability. RESULTS Nine miRNAs were selected for quantitative PCR (qPCR) detection after bioinformatics analysis. The miR-204-5p merited further investigation, because it was increased almost 5-fold in diabetic corneal epithelia compared to nondiabetic control corneal epithelia. Using luciferase activity assay, we identified SIRT1 was a direct target of miR-204-5p. The results of flow cytometry and MTT assay demonstrated that downregulation of miR-204-5p increased TKE2 cell growth and restored cell cycle progression in high glucose (HG) conditions by the regulation of Cyclin D1 and p16. Furthermore, we showed downregulation of miR-204-5p promoted HG attenuation of corneal epithelial wound healing via upregulation of SIRT1 in Ins2(Akita/+) mice. CONCLUSIONS Our data provide firm evidence of a role for miR-204-5p in the direct regulation of SIRT1 in diabetic corneas and identified the miR-204-5p-mediated regulation of SIRT1 contributes to the delay of epithelial cell cycle traversal in diabetic keratopathy. : Chinese Abstract.
منابع مشابه
The downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy
Objective(s): Autophagy-related 4B (ATG4B) plays an important role in the process of autophagy induction. However, the molecular events that govern the expression of ATG4B in this process are not well known. Materials and Methods: Human ATG4B 3'-UTR region (1377 nt) containing miR-34a/miR-34c-5p binding site was amplified by PCR. Luciferase assay was used to assess the activity of reporter gene...
متن کاملEffect of miRNA-1266-5p repression on the increasing cell survival and alterations of the cell cycle in AGS cell line
Background: Gastric cancer is among the most common malignancies in certain parts of the world, such as northwest Iran. miRNAs are small and single-stranded noncoding RNAs with about 19-23 nucleotides. Several studies have shown that miRNAs play important roles in gastric tumorigenesis. The aim of this study was to determine the effect of miRNA-1266-5p repression on the cell survival and altera...
متن کاملMicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting Sirtuin 1.
MicroRNAs (miRs) play crucial roles in tumorigenesis by directly suppressing the protein expression levels of their target genes. miR-204 has been suggested to act as a tumor suppressor in several types of human cancer. However, the exact role of miR-204 in osteosarcoma (OS) remains undetermined. In the present study, we aimed to investigate the effects of miR-204 on OS cell proliferation, migr...
متن کاملThe role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor
Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression. In this study, we aimed to assess the potential impacts...
متن کاملNegative Regulation of Semaphorin-3A Expression in Peripheral Blood Mononuclear Cells Using MicroRNA-497-5p
Background: Semaphorin-3A (Sema3A), as a secreted semaphorin, is an immune modulator molecule participating in the pathogenesis of autoimmune diseases. MicroRNAs (miRNAs) modulate the target-gene expression at the post-transcriptional level. It has been proposed that miRNAs may be crucial to the modulation of the function of semaphorins. Previous findings have proven that miR-497-5p is upregula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 56 3 شماره
صفحات -
تاریخ انتشار 2015